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Abstract
It is found that n = 1 resistive wall modes in the ITER advanced scenario can be fully stabilized by modestly low
rotation with a rotation frequency (normalized to the Alfvén frequency at the magnetic axis) of about � = 0.0075.
The existence of this stabilization scheme is proved with the AEGIS-K (Adaptive EiGenfunction Independent
Solution-Kinetic) code, which provides a fully kinetic (non-hybrid) and self-consistent (non-perturbative) description
of the system. Wave-particle resonances, shear Alfvén continuum damping, trapped particle effect and the parallel
electric effects are all taken into account. The rotation frequency for full stabilization is much larger than the
diamagnetic drift frequency; therefore, finite Larmor radius effects are negligible. We also find that the rotation
stabilization window opens first near the ideal wall limit.

PACS numbers: 52.35.Py, 52.55.Fa, 52.55.Hc

1. Introduction

Resistive wall mode stability [1] is a major concern for
ITER. It has been shown previously that the kinetic and
Alfvén resonances can play significant roles in stabilizing
the resistive wall modes [2–6]. However, a fully kinetic
analysis of the resistive wall modes is a challenging issue.
First, the conventional gyrokinetic equation cannot recover
magnetohydrodynamics (MHD), and most existing kinetic
MHD codes are hybrid in nature. Second, the coupling
of Alfvén continuum damping requires high-resolution
computation of the modes at the singular surfaces, which is
difficult to achieve with the usual non-adaptive codes. Even in
the hybrid scheme, it is unclear how the kinetic and Alfvén
resonances are coupled and how the parallel electric field
affects the stability. All of these issues point to the need for a
systematic kinetic analysis of the resistive wall modes in ITER.

Our current effort aims to resolve these difficulties by
developing a fully kinetic analysis of the resistive wall modes
in ITER. To achieve this goal, the theoretical formalism
should, on the one hand, be based on first principles and
therefore must be non-hybrid; and on the other hand, should
be numerically implementable. Our approach is to derive an
extended gyrokinetic formalism that can recover the MHD
limit. Our achievement of the recovery of MHD from our
newly developed gyrokinetics [9] enables us to extend the
MHD stability analyses directly to a fully kinetic analysis
without invoking the hybrid kinetic-fluid hypothesis.

Recovering the MHD equations from gyrokinetics is not
trivial. We find that the conventional gyrokinetic formalism

[7, 8] needs to be significantly modified in order to maintain
consistency of ordering and recover the MHD limit [9]. Several
major modifications need to be made simultaneously: (1) a
sufficiently high-order equilibrium distribution function must
be used; (2) the gyrophase-dependent part of the perturbed
distribution function and its coupling to the gyrophase-
independent part of the perturbed distribution function should
be included and (3) the adiabatic invariants should be computed
to sufficient order. Our newly developed gyrokinetic theory
in [9] modifies the conventional theory in several important
aspects: for example, we recover the Pfirsch–Schlüter current
effect in the perpendicular momentum equation and the
missing finite Larmor radius (FLR) effects. Especially we
have shown that the conventional results about the FLR effects
based on the introduction of the Bessel functions J0 and
J1 are incomplete in general. Even at lowest order our
gyrophase-averaged gyrokinetic equation is different from the
conventional drift kinetic equation. This is due to the coupling
of the gyrophase-dependent part of the distribution function to
the gyrophase-averaged gyrokinetic equation.

The success in recovering full MHD with our newly
derived gyrokinetic theory now allows the possibility to
consistently study the stability of resistive wall modes in a
non-hybrid manner. In this work we neglect the FLR effects
and focus on the particle-wave resonances, the continuum
damping, the trapped particle effect and the parallel electric
field effects. We numerically implement our newly developed
gyrokinetic theory by extending our existing AEGIS [11] to the
AEGIS-K kinetic version [12]. With the kinetic effect and the
coupling of the shear Alfvén resonances taken into account, we
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are able to study rotation stabilization of resistive wall modes
in an ITER advanced tokamak scenario.

The paper is arranged as follows. In section 2, the
theoretical formalism and the AEGIS-K code are described; in
section 3, the numerical investigation of resistive wall modes
in the ITER advanced tokamak scenario is presented; in the
last section, conclusions and discussion are given.

2. Theoretical formalism and AEGIS-K code

We use our newly developed gyrokinetic formalism in [9]
for this investigation. Having recovered the MHD from
this formalism, we are able to study the MHD modes in
a non-hybrid manner. For simplicity, we drop the FLR
effects in our first effort. Even in this limit our starting
equations are different from those of the conventional drift
kinetic formalism. In the conventional derivation of the drift
kinetic equation, the coupling between the gyrophase-averaged
part and the gyrophase-dependent part of the gyrokinetic
distribution function through the term α̇1∂δf/∂α has not been
taken into account. Here, δf is the distribution function and
α is the gyrophase, with the subscript ‘1’ denoting the first
order and the dot representing the time derivative along the
unperturbed particle orbit. Actually, only if this coupling
is taken into account can the parallel MHD equation of
motion be retrieved in the proper limit. This coupling can
be, alternatively, taken into account by including α1 into the
generalized gyrophase definition.

The basic set of equations is as follows: the perpendicular
momentum equation

−ρmω̂2ξ = δJ × B + J × δB − ∇δPc

− ∇⊥
∫

d3v(mρµB)δf0(x), (1)

the gyrophase-independent part of the gyrokinetic equation

v‖ · ∇f0(X) − iω̂δf0(X) = iω̂
mρ

Ti
µBFg0∇⊥ · ξ

+ iω̂
mρ

Ti
(µB − v2

‖)Fg0κ · ξ − iω̂
Zei

Ti
Fg0δϕ, (2)

and the quasineutrality condition

δϕ = − 1

1 + Zτ

Te

Zei

1

n0

∫
d3vδf0i. (3)

Here, ρm is the mass density, mρ denotes the mass, ei is the
ion charge, Z is the charge number, n0 is the ion density, ξ
is the perpendicular field line displacement, B denotes the
equilibrium magnetic field, δB = ∇×ξ×B, δJ = ∇×δB, P
represents the equilibrium pressure, δPc = −ξ · ∇P , v is the
ion speed, µ = v2

⊥/2B is the magnetic moment, T represents
the temperature, τ = Ti/Te with subscripts i and e represents,
respectively, the ion and electron species, κ represents the field
line curvature, δϕ specifies the parallel electric field effect, δf0i

denotes the gyrophase averaged distribution function for ion
species, Fg is the Maxwellian distribution function and the
subscripts ⊥ and ‖ represent, respectively, the perpendicular
and the parallel components to the equilibrium magnetic field
line. Due to the low mode frequency, we have assumed the
electron response to be adiabatic. We consider only the rotation
to be low as it is more interested for ITER. We then include

the rotation effects by replacing the mode frequency ω with
ω̂ ≡ ω + n� in equations (1)–(3), where � is the rotation
frequency. Note that the source terms on the right hand side of
equation (2) are different from those of the conventional drift
kinetic equation.

Here, we discuss the reason for our inclusion of the
rotation effects only by the Doppler shift in our formalism.
In actuality, rotation effects enter into the problem in three
categories—that is, not only through the Doppler shift, but
also via centrifugal force and Coriolis force. We investigate
the case when the rotation speed is much less than the ion
thermal speed. For this case, it can be shown that the rotation
effects of centrifugal force and Coriolis force are negligibly
small. In the ideal MHD case, this has been demonstrated
in [10]. In the kinetic description, we note, however, that
when one stays in the rotating frame of reference, it can be
shown that the centrifugal and Coriolis forces in this frame
result from the rotation, and since the rotation speed is much
smaller than the thermal speed, therefore particle drifts due to
the rotation speed are likewise smaller than those due to the
thermal speed. Consequently, only the Doppler shift effect
from rotation remains.

In our set of equations the wave–particle resonances, the
shear Alfvén continuum damping, the trapped particle effect
and the parallel electric effects are all taken into account.
We have not considered the precessional drift resonance as
[5], since we note that considering the resonance alone is
insufficient for ordering consistency. Since 〈ωd〉/ω∗i ∼ a/R,
inclusion of the 〈ωd〉 effect also needs to take into account the
ω∗i effect (i.e. k2

⊥ρ2
i effects) for consistency. Here, 〈ωd〉 is the

processional drift frequency, ω∗i is the ion diamagnetic drift
frequency, k⊥ represents the perpendicular wave number and
ρi is the ion gyro radius. Due to this complexity, we postpone
this part of the work to future studies.

We implement our newly derived set of equations (1)–(3)
by extending our existing AEGIS [11] to the AEGIS-K
code. In AEGIS-K formalism, the Fourier decomposition is
employed in the poloidal direction. In the radial direction,
the decomposition using the independent solutions are used,
instead of using the finite element decomposition as the
conventional codes. The independent solutions are obtained by
adaptive numerical shooting. To apply this method for global
eigen mode calculation, one has to overcome the difficulty
induced by the numerical pollution due to the large solution
associated with independent solutions. To solve this difficulty
AEGIS formalism uses the multiple region matching method,
which has shown to be successful in the ideal MHD calculation
in [11]. We also find that this method works well for the kinetic
case [12]. Since the AEGIS formalism is based on the adaptive
numerical scheme, we are able to resolve the coupling between
the kinetic and the shear Alfvén resonances.

3. Numerical investigation of resistive wall modes in
ITER configuration

We consider an ITER advanced tokamak configuration and
the n = 1 resistive wall modes, where n is the toroidal
mode number. The numerical equilibrium is generated by
the TOQ code (the MHD equilibrium code developed at
General Atomics, San Diego, CA). The typical parameters (for
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Figure 1. Cross section of the ITER advanced tokamak
configuration with poloidal and radial packed grids shown. The
poloidal coordinates shown here are the Hamada coordinate.

Figure 2. Typical safety factor profile, with the maximum step size
and the region separation for matching shown.

βN = 3.2) are as follows: q0 = 2.8, qa = 5.36, qmin = 2.18,
q95 = 4.20, elongation elongation κa = 1.8, and triangularity
δa = 0.48. Here, q0, qa, qmin, and q95 are, respectively, the
safety factor values at the magnetic axis, the plasma edge, the
q minimum and the 95% radial flux surface. The rotation
profile is specified as �(1 − ψ2). We consider the conformal
wall at the current calculation and assume the equilibrium to
be up–down symmetric. The plasma cross section is given in
figure 1. The typical safety factor profile (for βN = 3.2) is
shown in figure 2. Also shown in figure 2 is the radial grid for
eigen function output and the region separation for matching.
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Figure 3. The critical wall position for ideal MHD resistive wall
modes versus the beta normal βN. There is no rotation in this case.

Figure 4. Fourier components of radial field line displacement
versus the radial coordinate ψ for typical unstable resistive wall
modes without rotation, as computed by AEGIS. The beta normal is
βN = 3.2.

For baseline reference we first compute the case without
rotation with AEGIS code. Note that the AEGIS-K code
converges to the AEGIS results as the rotation and kinetic
effects are taken away. We also note that the AEGIS code
is in complete agreement with GATO [13] for ideal MHD
computations [9]. Figure 3 shows the ideal MHD stability
boundary for the critical wall position b (normalized by the
minor radius) versus the beta normal βN(≡ β(I/aB0)

−1),
where β is the ratio of the plasma to the magnetic energies,
I represents the tokamak toroidal current, a is the minor radius,
and B0 denotes the magnetic field at the magnetic axis. As
usual [1], the unstable resistive wall modes are recovered in
the ideal wall stabilization region. The typical ideal MHD
eigen mode is shown in figure 4.

With rotation and kinetic effects included, we find
that the stability boundary changed and the rotation and
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Figure 5. Real (a) and imaginary (b) parts of the Fourier
components of radial field line displacement versus the radial
coordinate ψ for the unstable resistive wall mode in the presence
of rotation and kinetic effects. The equilibrium parameters are as
follows: βN = 3.2, � = 0.003 and b = 1.5.

kinetic stabilization channel appears. A typical unstable
kinetic mode computed by the AEGIS-K code is given in
figure 5 for beta normal βN = 3.2 and normalized rotation
frequency � = 0.003. Note that in this presentation, the
rotation frequency � is normalized by the Alfvén speed√

B2/(µ0ρmR2q2) at the magnetic axis. Here, R is the major
radius and µ0 is the magnetic constant. One of the advantages
of the AEGIS-K code lies in that it preserves the ideal MHD
roots. This can be seen from a comparison between figure 4
and 5(a).

Figure 6 shows the resistive wall mode growth rate γ τw

versus the wall position b for fixed beta value βN = 3.2. Here,
the wall time τw = µ0σdb̄ is introduced to scale the resistive
wall mode growth rate, where σ is wall conductivity, d is wall
thickness and b̄ is average wall minor radius. From this figure
one can see that the rotation and kinetic stabilization channel
appears first near the critical wall limit as rotation increases.
This feature also occurs in the stability diagram for the resistive
wall mode growth rate versus the beta normal βN as will be

Figure 6. Resistive wall mode growth rate versus the wall position
for beta normal βN = 3.2, as computed by the AEGIS-K code. The
dashed curve represents the growth rate without plasma rotation and
kinetic effects. The dashed–dot (� = 0.003), dashed–dot–dot
(� = 0.005) and solid (� = 0.007) curves are the growth rates with
plasma rotation and kinetic effects included.

discussed later in this paper. Comparison with the results in [4]
shows the effects found in the current kinetic computation is not
purely due to the Alfvén continuum damping. Nevertheless,
we note that the equilibrium in [4] (Ohmic scenario) is
different from the current one. However, the apparent order-
of-magnitude difference in rotation frequency is not due to
the difference in equilibria. Note that the results in [4] are
for an incompressible plasma in the parallel direction. The
plasma parallel compressibility can give rise to the so-called
apparent mass effect, given by the factor (1 + 2q2). Therefore,
the actual rotation frequency in [4] is in fact one order of
magnitude smaller, and is therefore on the same order as
the current results. This shows the consistency of our work,
since the kinetic computation in this paper corresponds to a
compressible plasma in the parallel direction.

To study the dependence of the resistive wall mode
stability on the beta value, we consider a series of numerical
equilibria with beta normal values ranging from the no wall
limit βno wall

N = 2.95 to the ideal wall limit β ideal wall
N = 3.84 for

fixed wall position b = 1.5. Figure 7 shows the resistive wall
mode growth rate versus the normalized beta Cβ for a given
wall position b = 1.5. As usual, the normalized beta is defined
as follows:

Cβ = βN − βno wall
N

β ideal wall
N − βno wall

N

.

The case of � = 0.0075 is also computed and full stabilization
is obtained. From this figure one can see that the rotation and
kinetic stabilization channel appears first near the ideal wall
stability limit as the rotation frequency increases. This can be
understood from the energy picture introduced in [3]. Using
the no wall and ideal wall energy integrals δW∞ and δWb, the
resistive wall mode growth rate can be written as follows:

γ ∼ −δW r
∞δW r

b + δW i
∞δW i

b

|δW r
b|2 + |δW i

b|2
, (4)
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Figure 7. Resistive wall mode growth rate versus the normalized
beta Cβ for wall position b = 1.5, as computed by the AEGIS-K
code. The dashed–dot curve represents the growth rate without
plasma rotation and kinetic effects. The dashed curve represents the
growth rate without plasma rotation and kinetic effects. The
dashed–dot (� = 0.003), dashed–dot–dot (� = 0.005) and solid
(� = 0.007) curves are the growth rates with plasma rotation and
kinetic effects included.

where the superscripts ‘r’ and ‘i’ represent the real and
imaginary parts, respectively. Without the rotation and kinetic
effects (δW i

∞ = δW i
b = 0), the resistive wall mode growth

rate tends to infinity at the ideal wall limit δW r
b = 0. In the

presence of the rotation and kinetic effects (δW i
∞δW i

b 	= 0),
the numerator of equation (4) shows that δW r

b = 0 is also
the point which is easiest to be stabilized by the rotation
and kinetic effects through resonance induced imaginary part
energy δW i

∞δW i
b.

From figures 6 and 7, one can see that the rotation and
kinetic effects may increase the growth rate of the resistive
wall modes under the lower end of the stabilization window.
The increasing part of the resistive wall mode growth rate
in the presence of rotation and kinetic effects resembles the
increasing feature of the resistive wall mode growth rate in
the ideal MHD description and in the absence of rotation.
The stability window near the ideal wall limit is opened as if
the ideal MHD resistive wall mode growth rate is suppressed
downwards and pushed leftwards (i.e. towards the no wall
limit). As a result, the resistive wall mode growth rate under
the lower end of the stabilization window increases in the
presence of rotation and kinetic effects. This seems to be
a typical feature of the stabilization of resistive wall modes
through the particle and shear Alfvén resonances as described
by equation (4).

In figures 6 and 7 the growth rate curves for � = 0.003
decrease sharply. This can also be understood by equation (4).
Near the ideal wall limit δW r

b → 0, the denominator of
equation (4) becomes very small (one order smaller than the
first term in the numerator) and consequently the growth rate
becomes very large. However, as the system approaches the
ideal wall limit, the destabilizing first term in the numerator
becomes small as well and the stabilizing second term in the
numerator emerges as the dominant term. This changes the
growth rate sign and brings down the large growth rate sharply.

4. Conclusions and discussion

In this paper we find that n = 1 resistive wall modes in the
ITER advanced scenario can be fully stabilized by modestly
low rotation. This is achieved at the normalized rotation
frequency of � = 0.0075 at the magnetic axis with rotation
profile �(1 − ψ2). The existence of this stabilization scheme
is proved with the AEGIS-K code, which provides a fully
kinetic (non-hybrid) and self-consistent (non-perturbative)
description of the system. The wave–particle resonances,
shear Alfvén continuum damping, trapped particle effect and
parallel electric effects are all taken into account. In our
ordering scheme the FLR effects, especially the precessional
drift [5], have not been considered. Although the lower range
of our parameter domain in figures 6 and 7 approaches the
ion diamagnetic drift frequency, the rotation frequency for
full stabilization, 0.0075, is well above the diamagnetic drift
frequency. Hence, neglecting the FLR effects is justified. Our
results represent the first self-consistent theoretical proof of
full rotation stabilization.

Our analysis is developed from first principles, namely
the Vlasov and Maxwell equations with a suitable ordering
scheme. This analysis is enabled by our newly derived
gyrokinetic formalism in [9], which recovers MHD in the
proper limit and retrieves the missing FLR effects. We note
especially that the gyrophase-averaged gyrokinetic equation
to lowest order, on which our analysis is based, is different
from the conventional drift kinetic equation. As shown in [9],
the coupling between the gyrophase-dependent and gyrophase-
independent parts of the distribution function must be taken
into account in order to derive the drift kinetic equation.

The neutral beam power is relatively small in ITER, and
consequently, beam driven rotation could be relatively small.
However, there is some uncertainty about the value of the
rotation in ITER, since the so-called spontaneous rotation may
occur. The C-Mod results show that spontaneous rotation
speed is about 10% of the ion thermal speed [14], which is
not small. Therefore, the rotation stabilization window found
in our paper could be of interest for ITER.

We note the importance of studying the case with
even lower rotation frequency, where the precessional drift
resonance occurs [5, 6]. However, we believe the theoretical
understanding of the precessional drift resonance effect
on resistive wall mode stabilization and its experimental
validation are still open to question. Reference [6] (numerical
proof of [5]) is based on a perturbative method, whereas the
non-perturbative hybrid calculations with the MARS-K code
show that the perturbative and non-perturbative results differ
dramatically [15]. Furthermore, the MARS-K code has not
taken into account the finite orbit size and the parallel electric
field, among other things. Also, as we have found with our
newly developed gyrokinetic theory, the FLR effects have
been oversimplified in previous studies. In addition to these
reasons, we are also concerned about the numerical scheme
and code validation for studies at lower frequencies. Due
to the complexity of this problem, one could easily lose the
MHD benchmark point in the non-perturbative calculations
and no longer be able to identify the MHD eigen mode trace
as computed from existing MHD codes such as GATO and
AEGIS. For our subsequent investigations, we hope to use
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the current results as a starting benchmark point. Indeed,
comparison of our MHD (figure 4) and kinetic (figure 5) eigen
modes reveals the MHD trace. This frequency domain is
easier to benchmark (with the use of the Z-function). And this
is another reason why we are pushing this research forward
slowly and deliberately.

The other feature of this investigation is the adaptive nature
of the AEGIS-K code. From the eigen function given in figure 5
one can see that the radial resolution is an important issue for
kinetic computation. It is more challenging than the shear
Alfvén continuum damping calculation. In most cases, the
radial grid density for output can run as high as 800 with
packing at the resonance surfaces. The matrix size in the
AEGIS-K numerical scheme is determined by the poloidal
Fourier components. Increasing the radial resolution is not
accompanied by an increase in the matrix size. This gives the
AEGIS-K code the capacity to resolve singular layer behaviour
in the presence of kinetic and shear Alfvén resonances.

Although the AEGIS-K numerical scheme is effective
and advanced, the AEGIS-K code is still new. Further
improvement is likely. We plan to extend the AEGIS-K code
to the non–up–down symmetric case and also to include the
precession drift resonance together with the FLR effects. The
direct comparison with the existing codes such as MARS-K
[15] is also under consideration. These will be carried out in
the future.
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